Materials Science II

Course Code:

Π1 4040

Semester:

4th Semester

Specialization Category:

ΜΕΥ

Course Hours:

4

ECTS:

5


Course Tutors

Stamatios Boyatzis

Course Description

Course Theory

FATS AND OILS: Chemical composition and properties of lipids. Xirainomena oils. Mechanisms of drying-polymerization of xirainomenon oils. Factors and mechanisms of deterioration of painted layers. Methodology and examples of chemical analysis of lipids in art and archaeological finds. NATURAL WAXES: Types of natural waxes and their use in painting and conservation of works of art. Detection and identification of natural waxes in works of and archaeological findings. NATURAL RESINS: Types of natural resins and their chemical composition. Natural resin varnishes. Methodology of chemical analysis of natural resins. Examples of analysis and characterization of natural resins in artworks and archaeological findings. PROTEIN MATERIALS: Structure of protein macromolecules. Physical and chemical properties (solubility, denaturation, staining reactions, hydrolysis and oxidation reactions). Protein binders in painting (animal glue, egg, etc.). Protein materials of museum objects (skin, bones, animal fibers, etc.). Examples of analysis and characterization of protein materials in works of art and archaeological finds. POLYSACCHARIDES: starch, cellulose, gums. Structure of macromolecules. Physical and chemical properties. Degradation reactions of polysaccharide macromolecules. Methods of polysaccharide analysis. DYES (ORGANIC COLORANTS): Categories of organic colorants: natural and synthetic dyes. Chemical, physical, chemical and spectroscopic properties of organic colorants. Dyes and lakes. STRUCTURE AND ACTION OF SOLVENTS: Internal energy of molecules. Intermolecular forces. Dipole moment of molecules and dielectric constant. Dispersion and polarity forces. Hydrogen bonding. Other polar interactions: dipole-dipole interactions. Hildebrand’s and Hansen’s solubility parameters. Fractional solubility parameters. Teas ternary diagrams. SELECTION OF SUITABLE SOLVENT: Correlation of solvent molecules structure with solubility parameters. Solvent categories. Calculation of solubility parameters for solvent mixtures. The use of the Teas diagram in choosing the appropriate solvent. Solvents toxicity. Extraction of industrial solvents LD50 and TLV information ​​from manufacturer’s data. THE STRUCTURE OF SYNTHETIC POLYMERS: Methods of polymer formation. Monomers and monomer units in a polymer chain. Chain length. Number-average and weight-average molecular weight (Mn and Mw). Isomeric polymers: linear and branched polymers; cross-linked polymer structures. Homopolymers and copolymers. Categories of copolymers. PROPERTIES OF POLYMERS: crystallinity and melting point. Glass transition temperature. Thermoplastic and thermosetting polymers. Elastomers. Consolidants, coatings and adhesives – glues. Mechanical properties: tensile testing; compression and torsion of polymeric materials. Chemical properties and durability of polymers; shelf life. Correlating polymer structures with their physical properties. SPECIAL CATEGORIES OF POLYMERS: polymer resins based on acrylic acid and esters. The Acryloid (or Paraloid) family of resins. Polymers based on vinyl alcohol; vinyl resins: Polyvinyl acetate. Polyethylene glycols (PEG). Synthetic derivatives of cellulose. Polycarbonate materials. The use of solvents in Synthetic Polymers: Mechanism of dissolution of polymer materials. Swelling. Radius of interaction on the basis of Hansen’s solubility parameters. Location of a polymer within Teas diagram.

 

The Scope of the Course and Objectives

The Scope of the Course

Students should be able to understand molecular structure, properties and methods of dissolution of synthetic and naturally derived materials and of conservation.

Course objectives

To gain skills in the solvating power of specific liquids, and some chemical properties of these materials.

STUDENT ASSESSMENT
Language of evaluation: Greek
The student’s final grade results from 50% of the grade of the theoretical part and 50% of the grade of laboratory practice.
Students’ evaluation (100%):
Student evaluation method: questions demanding short succinct answers; multiple choice questions; questions demanding short essays;
• Theory course (50%): written exam
• Laboratory course (50%): (a) Written laboratory essay per practical (β) written exam

SUGGESTED BIBLIOGRAPHY
GREEK
Ελένη Ιωακείμογλου, Τα Οργανικά Υλικά στην Τέχνη και την Αρχαιολογία, Εκδόσεις Ίων, Επίτομη έκδοση 2011
W. D. Callister, Επιστήμη και Τεχνολογία των Υλικών, Εκδ. Τζιόλα, 9η Έκδοση, 2016
Κυρανάς Ευστράτιος, Λειτουργικές Ιδιότητες Νερού, Πρωτεϊνών, Σακχάρων, Λιπιδίων και Φυσικών Χρωστικών, Εκδόσεις Τζιόλα, 2011
Κ. Παναγιώτου, Επιστήμη και Τεχνολογία Πολυμερών, Εκδ. Πήγασος, 2001
Καραγιαννίδης Γεώργιος Π., Σιδερίδου Ειρήνη Δ., Χημεία Πολυμερών, Εκδ. Ζήτη, 2006
Ευαγγελία Βαρέλα, Ζωγραφική και βαφική των αρχαίων και μέσων χρόνων, Εκδ. Ζήτρος 2019
Hiemenz Paul, Lodge Timothy, Χημεία Πολυμερών, ΙΤΕ-Πανεπιστημιακές Εκδόσεις Κρήτης, 2014
Τσιτουρίδου Μ., Η Ορατή Πλευρά του Χρώματος. Προσεγγίσεις του Χρώματος στις Φυσικές Επιστήμες, Εκδόσεις Τζιόλα, 2008
Ελευθεριάδης Ιωάννης, Νικολαΐδης Νικόλαος, Τσατσαρώνη Ευφορία, Χημεία και Τεχνολογία του Χρώματος, Ελληνικά Ακαδημαϊκά Ηλεκτρονικά Συγγράμματα και Βοηθήματα – Αποθετήριο “Κάλλιπος”, 2016

ENGLISH
Stamatis C Boyatzis, Materials in Art and Archaeology through Their Infrared Spectra. Nova Science Publishers, 2022
John S.Mills, Raymond White, The Organic Chemistry of Museum Objects, Elsevier Science & Technology, 1994
C. V. Horie, Materials for Conservation, 2nd Edition, Butterworth Heinemann, 2010
Barbara R. Greenberg and Dianne Patterson, Art in Chemistry, Chemistry in Art, 2nd ed., Teacher Ideas Press, 2008
S. Weiner, Microarchaeology: Beyond the Visible Archaeological Record. Cambridge University Press, 2010.
Mark Pollard, Carl Heron, Archaeological Chemistry, 3rd ed. Royal Society of Chemistry, 2016.
Taft, W. Stanley Jr., Mayer, James W., The Science of Paintings, Springer, Ney York, 2000